Author: Imran Rahman

Fossil Focus: Dinosaurs down under

Fossil Focus
by Stephen F. Poropat*1,2 Introduction: Ask the average person in the street to name an Australian dinosaur, and you will be lucky if you get a correct answer. If they say crocodile, they are in the right postcode but have the wrong address. If they say emu, then they are correct, strictly speaking, but they are either lucky or being smart. If they say kangaroo, back away slowly and avoid eye contact. If they say koala bear, run home and take a few Panadol. I could forgive most people for not being able to identify any Australian dinosaurs. First and foremost, there are not many to know: only 18 Australian dinosaurs (including one bird, Nanantius) from the Mesozoic era (251 million to 66 million years ago) have been officially named. And yet, the first discovery of Mesozoic dinosaur r...

Patterns in Palaeontology: Palaeoart – fossil fantasies or recreating lost reality?

Patterns in Palaeontology
by Mark P. Witton*1 Introduction: Illustrations, sculptures and animations of fossil organisms and the world around them are mainstays of palaeontology. Such restorations, known as palaeoart, are more important than they may at first seem: they help to communicate palaeontological ideas across age and language barriers; have inspired generations of scientists; and have provided the foundation of an international industry of palaeontology-themed merchandise and media worth hundreds of millions of pounds. Due to its increasing prominence and popularity, palaeoart is routinely scrutinized by scientists and the public alike. How can we infer so much about the postures, soft tissues, colours and behaviour of extinct animals when fossil skeletons — be they shells, bones or carapaces — are all ...
Perspectives: Three years on, palaeontology still online

Perspectives: Three years on, palaeontology still online

Perspectives
by the Palaeontology [online] team Palaeontology and the history of life are topics that capture the imaginations of children and adults alike, many of whom are keen to learn all about the latest weird wonders discovered by science. Communicating cutting-edge research to the public can be difficult, however, partly because scientists tend to publish their results in technical papers aimed at other scientists, but also because these papers are generally not freely available to non-academics — although the growth of open access means that this is improving in many countries. Popular-science writers provide accurate and accessible summaries of some of the most topical work, but can cover only a fraction of the research carried out by palaeontologists, naturally focusing on current stories ra...

Fossil Focus: Arthropod–plant interactions

Fossil Focus
by Ben J. Slater*1 Introduction: When the geneticist and evolutionary biologist J. B. S. Haldane was asked what he could conclude about the nature of a creator from his studies of natural history, he supposedly replied that any creator must have “an inordinate fondness for beetles”. Indeed, there are more species of beetle than of any other animal alive today, and as insects, beetles belong to the most diverse class of modern organisms, which includes more than two-thirds of all described species (Fig. 1). It can be said that macroscopic life is dominated by insects (and in particular beetles), but like all organisms, insects — and other arthropods, the larger phylum to which the insects belong — don’t exist in isolation. Organisms are the product of their environment, which inc...

Patterns in Palaeontology: The latitudinal biodiversity gradient

Patterns in Palaeontology
by Philip D. Mannion*1 Introduction: Today, most living species are found in the tropics, the region of the Earth that surrounds the Equator. Species numbers, a measure of biodiversity, decline towards both the North and South poles (Fig. 1). This is known as the latitudinal biodiversity gradient (LBG), and it is the dominant ecological pattern on Earth today. Although there are exceptions to the rule, including high-latitude peaks in diversity of many marine or coastal vertebrates (including seals and albatrosses), the LBG describes the distribution of species diversity for the vast majority of animals and plants, both on land and in the sea, and in the Northern and Southern hemispheres. Understanding the causes and evolution of the LBG helps researchers to explain present-day geograp...

Fossil Focus: Heterostraci

Fossil Focus
by Joseph N. Keating*1 Introduction: The Heterostraci (which means ‘different shield’) make up an extinct group of jawless fish that lived during the early to middle Palaeozoic era, approximately 440 million to 359 million years ago. They were exceptionally diverse, with over 300 species currently described from marine and freshwater sediments of North America, Europe and Siberia­­­. Heterostracans are characterized by their external armour of distinct plates, which are composed mainly of bone and dentine (a hard-tissue component of teeth in vertebrates). Most heterostracans can be classified into two major groups, the cyathaspids and the pteraspids, which differ with respect to the structure, number and arrangement of their armoured plates. Heterostracan fossils are rarely found as comp...

Patterns in Palaeontology: Exceptional Preservation of Fossils in Concretions

Patterns in Palaeontology
by Victoria McCoy*1 Introduction: Have you ever seen a geode — a boring-looking ball-shaped rock that, when split open, reveals a remarkable crystalline interior? For most people, the first reaction to the dazzling crystal interior is to marvel at its beauty. But for some — and perhaps you fall into this group, since you are reading this article — the second and more important reaction is to wonder how it got that way. The people who ask this question understand that the beauty of nature is far greater when we understand it deeply and see it more fully; in short, they are scientists at heart. If you are a scientist at heart, I have very good news for you. There is something out there that is like a geode, but perhaps even more interesting, at least to fossil lovers: the curious rocks ...

Fossil Focus: Trilobites

Fossil Focus
by Mark Bell*1 Introduction: Trilobites make up one of the most fascinating and diverse groups in the fossil record. Over the course of their long history — which dates back to near the beginning of the Cambrian period, around 520 million years ago — they have inhabited a wide range of marine environments, from reefs to abyssal depths. In addition, trilobites have evolved several different life strategies, from burrowing to swimming; these are reflected in their varied appearances, or morphologies (Fig. 1). Several species, famously those from the Devonian period of Morocco (about 420 million to 360 million years ago), developed a rich array of protective spines, which has made them a popular choice among fossil collectors and dealers.   The earliest scientific report of a...

Patterns in Palaeontology: Who’s there and who’s missing?

Patterns in Palaeontology
by Simon Darroch*1 Introduction: Sitting in the sweltering heat of southern Japan, I’m faced with a conundrum. The limestone cliff in front of me preserves the boundary between the Permian and Triassic periods, a point in time around 250 million years ago that witnessed the greatest mass extinction of the Phanerozoic eon. I’m collecting rock and fossil samples from around this boundary to study how the make-up of fossil communities changed in response to this extinction event: this is palaeoecology. The boundary itself couldn’t be easier to spot — the lower (and older) part of the cliff is composed of a pale white-yellow limestone packed full of fossils of shelled marine invertebrates including brachiopods, bivalves and gastropods, as well as microscopic sea-floor-dwelling (benthic) crea...

Life as a Palaeontologist: Going solo and making a living out of working with fossils

Life as a Palaeontologist
by Leyla Seyfullah*1 Introduction: In an article on Palaeontology [online] last year, Sarah King explained how undertaking a PhD can help you to launch an academic career in palaeontology. Obtaining that PhD can be a frustrating yet ultimately rewarding experience, but it is only the beginning for many palaeontologists — and it is worth pointing out that a PhD isn't a prerequisite for certain jobs in palaeontology (for example, dealing fossils). Here, I hope to give you a sense of what might happen after the PhD, and how this could lead to a wide range of new challenges and take you down previously unimagined paths. You didn't think that getting a job in palaeontology would be straightforward, did you?! As a PhD (Doctor of Philosophy) student, you are dedicated to working on your doct...