Patterns in Palaeontology

Patterns In Palaeontology: Digitally Peering Inside Fossil Skulls

Patterns In Palaeontology: Digitally Peering Inside Fossil Skulls

Patterns in Palaeontology
by Charlotte M. Bird 1 Introduction: Imagine you are an avid fossil hunter and have just dug up a skull of an extinct vertebrate. You are the first human ever to see it. Not only is that amazing, but you are also at the start of a journey into discovering how this organism lived: whether it was diurnal (active during the day) or nocturnal, whether it hunted above ground or burrowed, had poor vision or an exceptional sense of smell. Despite the millions of years that may have passed, the growing field of virtual palaeontology provides a new world of analysis techniques that can help palaeontologists to peer inside the skull and uncover some truly fascinating insights. What are digital endocasts? Virtual Palaeontology is the non-destructive study of fossils using digital method...
Patterns in Palaeontology: The Real Jurassic Park

Patterns in Palaeontology: The Real Jurassic Park

Patterns in Palaeontology
by Jack Wilkin*1 Introduction: The Morrison Formation is renowned worldwide as one of the world’s most significant locations for dinosaur fossils. It covers more than 150 million square kilometres, running from Alberta in Canada to New Mexico in the United States, and from Idaho across to Nebraska (Fig. 1). The Morrison dates to the Oxfordian stage of the late Jurassic period, some 155 million to 148 million years ago. It is what is known as a Konzentrat-Lagerstätten, meaning that it has a very high concentration of fossil remains, with extensive bone beds created by flash floods depositing lots of bones in one place. The Morrison provides palaeontologists with remarkable insight into a late Jurassic terrestrial ecosystem. Not only does the formation contain some of the largest din...
Patterns in Palaeontology — Deducing the tree of life

Patterns in Palaeontology — Deducing the tree of life

Patterns in Palaeontology
by Russell Garwood*1 Introduction “Increasing knowledge leads to triumphant loss of clarity” — Palaeontologist Alfred Romer Some areas of life and human endeavour have the luxury of certainty. Along these paths of discovery, there are things we can know to be true or false. In others, it is impossible to assess the concept of truth: it can’t be established, or just isn’t a consideration. And between these extremes is a whole mess of important stuff. Palaeontology almost always lies somewhere on this gradation. Researchers studying past life are often juggling multiple layers of uncertainty. We try to balance the need to say something useful — something with meaning, that moves a field and its consensus closer to the truth — with the risk of over-interpreting our data. If the data is t...
Patterns in Palaeontology: How do we measure biodiversity in the past?

Patterns in Palaeontology: How do we measure biodiversity in the past?

Patterns in Palaeontology
by Emma Dunne*1 Introduction: Life on Earth is incredibly diverse. More than 1.7 million species have already been described and estimates suggest that there could be as many as 9 million in total. But exactly how this rich biodiversity has developed over the last 542 million years since the Cambrian remains the subject of debate amongst palaeontologists. Did biodiversity increase steadily from one geological period to the next, or did it wax and wane without any overall direction? These questions are crucial in a modern context: today, we are flooded with urgent reports on the state of biodiversity worldwide, with many scientists stating that we are in the middle of a biodiversity crisis driven by human impact, leading to what is being called the sixth mass extinction. To understand and...
Patterns in Palaeontology — The earliest skeletons

Patterns in Palaeontology — The earliest skeletons

Patterns in Palaeontology
by Amelia Penny*1 Introduction and background The ability to build and maintain a skeleton is one of the major innovations in the history of life. During the Cambrian explosion, which began around 540 million years ago, diverse animal (metazoan) skeletons appeared suddenly in the fossil record. This is also when we first see evidence for predation, the ability to move around and most of the animal body plans we would recognize today. The ability to grow a resistant skeleton was a major factor in the evolutionary arms races of the Phanerozoic eon — the time since the Cambrian explosion — and it made possible the dizzying variety of shells, bones and teeth scattered throughout the Phanerozoic fossil record. But the origin of skeletons has a much deeper root, in the Proterozoic eon (2,500 m...
Patterns in Palaeontology: The development of trilobites

Patterns in Palaeontology: The development of trilobites

Patterns in Palaeontology
by Lukáš Laibl*1 Introduction: Trilobites are an iconic group of ancient animals, with a fossil record that dates back more than 500 million years and consists of some 17,000 species. These extinct arthropods are characterized by a hard, mineralized exoskeleton, which greatly enhances their chances of being preserved as fossils. The exoskeleton is thought to have been mineralised soon after they hatched from eggs, and so we can find various growth stages of trilobites in the fossil record, including individuals less than half a millimetre long. That makes it possible to study the entire post-embryonic development (that is, the development after they hatch from the egg) of numerous species. This is important because work on the development of ancient organisms provides data crucial for ou...
Patterns in Palaeontology: Environments of the Cambrian explosion

Patterns in Palaeontology: Environments of the Cambrian explosion

Patterns in Palaeontology
by Thomas W. Hearing*1 Introduction: Shimmering curtains of sunlight stream down through the waters of a shallow sea that has been advancing landwards for several million years. This transgression has formed wide areas of shallow continental shelf seas. The sea bed teems with life — some of it familiar, some much less so. The oddities begin on the floor of this tropical sea: a reef built not of corals, but by carbonate-producing microbes and the strange archaeocyathan sponges, alongside creatures that look more conventionally sponge-like but probably aren’t. Streams of seaweed drift on the currents; closer examination reveals small, snail-like shelled molluscs on some of the tendrils. A trilobite scuttles for cover, startled by the flickering shadow passing overhead, and narrowly avoids ...
Patterns in Palaeontology: Palaeoproteomics

Patterns in Palaeontology: Palaeoproteomics

Patterns in Palaeontology
by Caitlin Colleary*1 Introduction: The fossil record is our only direct window to the history of life on Earth. The ability to find and study the remains of animals, plants and other organisms that lived millions of years ago is extraordinary, and as technology has improved over the past few decades, scientists have realized that fossils contain more information about the stories of extinct life forms than even Charles Darwin could have imagined. Biomolecules (such as DNA, proteins and lipids) that make up modern animals contain information about how their bodies work (physiology — that is, physical and chemical functions), relationships to other animals and their evolutionary histories. With the advances in analytical tools such as high-resolution mass spectroscopy, the study of biomol...
Patterns in Palaeontology: From giants to dwarfs – Estimating the body mass of extinct species

Patterns in Palaeontology: From giants to dwarfs – Estimating the body mass of extinct species

Patterns in Palaeontology
by Charlotte Brassey1 Introduction Body mass is so fundamental to an organism that it is often overlooked, yet it has considerable importance in animal biology. It is, quite literally, the amount of matter making up an individual. On a day-to-day basis, we encounter values for body mass as we step onto our bathroom scales and are encouraged to maintain a healthy weight (not too heavy or too light). Veterinarians are interested in body mass for much the same reason: the weight of an animal can provide an indication of its health and is commonly used to plan medical treatments. Body mass is also tied to an animal’s physiology (including speed of metabolism and length of pregnancy), ecology (diet, home-range size) and behaviour (social status, aggression). For these reasons, zoologists are ...
Patterns in Palaeontology: A story of vision

Patterns in Palaeontology: A story of vision

Patterns in Palaeontology
by James Fleming*1 Introduction: Photoreception, the ability to perceive light, is a sense shared by many living organisms on Earth. However, only some can take the step beyond merely detecting light levels, and generate an image. Humans are among the animals that have image-forming vision, and are able to see in colour in the day (polychromatic diurnal vision) and in black and white at night (monochromatic nocturnal vision) — the shades of colour that we pick up on an evening out trigger our diurnal receptors at very low levels. However, this is not the only way in which animals can see the world around them. Some species, such as whales and dolphins, can see only monochromatically no matter the time of day, while others see in colour no matter how dark it gets! The elephant hawk-mot...